[Sans titre]
Langue
en
Article de revue
Ce document a été publié dans
Revista Math. Iberoamericana. 2013, vol. 29, n° 2, p. 691-713
Résumé en anglais
We consider degenerate differential operators of the type A = − d k,j=1 ∂k(akj∂j) on L2(Rd) with real symmetric bounded measurable coefficients. Given a function χ ∈ C ∞ b (Rd) (respectively, a bounded Lipschitz domain Ω), ...Lire la suite >
We consider degenerate differential operators of the type A = − d k,j=1 ∂k(akj∂j) on L2(Rd) with real symmetric bounded measurable coefficients. Given a function χ ∈ C ∞ b (Rd) (respectively, a bounded Lipschitz domain Ω), suppose that (akj) ≥ μ > 0 a.e. on supp χ (respectively, a.e. on Ω). We prove a spectral multiplier type result: if F : [0,∞) → C is such that supt>0 ϕ(.)F(t.) Cs < ∞ for some nontrivial function ϕ ∈ C ∞ c (0,∞) and some s > d/2 then MχF(I + A)Mχ is weak type (1, 1) (respectively, PΩF(I +A)PΩ is weak type (1, 1)). We also prove boundedness on Lp for all p ∈ (1, 2] of the partial Riesz transforms Mχ∇(I + A) −1/2Mχ. The proofs are based on a criterion for a singular integral operator to be weak type (1, 1).< Réduire
Origine
Importé de halUnités de recherche