Corbicula fluminea: A sentinel species for urban Rare Earth Element origin
Langue
EN
Article de revue
Ce document a été publié dans
Science of the Total Environment. 2020-08-01, vol. 732, p. 138552
Résumé en anglais
The increase in the global population, coupled with growing consumption of Rare Earth Elements (REEs), has led to increasing transfer of these emerging contaminants into the environment, particularly through the effluents ...Lire la suite >
The increase in the global population, coupled with growing consumption of Rare Earth Elements (REEs), has led to increasing transfer of these emerging contaminants into the environment, particularly through the effluents from wastewater treatment plants (WWTP). The objectives of this study were to determine the geochemical quality of a French river subject to strong urban pressure (the Jalle River in the Bordeaux area) and to examine the bioavailability of natural and anthropogenic REEs in a model species of freshwater bivalve, the Asian clam Corbicula fluminea. To this end, two fractions (dissolved and total) of the water from the Jalle River were sampled and the bivalves were exposed by in situ caging during a three-month monitoring period. The REE patterns obtained showed the presence of Gadolinium (Gd) anomalies in the dissolved and total fractions as well as in Corbicula fluminea. The apparent bioavailability of natural REEs was in the following order for the dissolved fraction: Medium REEs (MREEs) > Light REEs (LREEs) > Heavy REEs (HREEs) and for the particulate fraction: MREEs > LREEs = HREEs. These results highlight the importance of the particulate fraction in the study of the bioavailability of REEs in bivalves. An increase of anthropogenic Gd (Gdanth) was observed in the dissolved fraction between the upstream site (3.4 ng.L−1) and the WWTP Downstream site (48.4 ng.L−1). The Gd anomaly observed in the water was also observed in Corbicula fluminea with a significant increase in the bioaccumulation of Gdanth, from 1.5 ± 1 ng.gDW−1 upstream to 4.1 ± 0.7 ng.gDW−1 downstream of the WWTP effluents, thus confirming the enhanced bioavailability of medical-origin Gd to freshwater bivalves. This study strongly suggests that Corbicula fluminea can be used as a sentinel species in the monitoring of Gd contamination of medical origin. It would thus appear important to consider the potential entry of this contaminant into the human food chain via other, commercially exploited bivalve species.< Réduire