Assessing the potential risk and relationship between microplastics and phthalates in surface seawater of a heavily human-impacted metropolitan bay in northern China
Langue
EN
Article de revue
Ce document a été publié dans
Ecotoxicology and Environmental Safety. 2020-11, vol. 204, p. 111067
Résumé en anglais
The impacts of microplastics (MPs) and phthalates (PAEs), a class of MP-associated contaminants, on the marine environment are not thoroughly understood despite concern over their adverse effects on humans and ecosystems. ...Lire la suite >
The impacts of microplastics (MPs) and phthalates (PAEs), a class of MP-associated contaminants, on the marine environment are not thoroughly understood despite concern over their adverse effects on humans and ecosystems. Field studies linking MPs and PAEs in seawater have not yet been reported. We investigate for the first time the correlation between MPs contamination and the presence of PAEs in the surface seawater of Jiaozhou Bay (JZB), a semi-enclosed metropolitan bay in northern China heavily impacted by human activity. The abundance of MPs, dominated by polyethylene and polyethylene terephthalate mostly smaller than 2 mm, ranged between 24.44 items/m3 and 180.23 items/m3, with the majority being black and transparent fibers and fragments. Concentrations of PAEs varied from 129.96 ng/L to 921.22 ng/L. Relatively higher abundances of MPs and higher concentrations of PAEs were generally found in areas near riverine inputs and sewage treatment plants. There was a strong correlation between PAEs concentration and MPs abundance, suggesting that they are closely linked. In a risk assessment combining PAEs and MPs, the risk quotients (RQs) indicated that the ecological risk of di-n-butyl phthalate in JZB was relatively high (0.046<RQ < 0.516); the risk of the other PAEs were low. The overall ecological hazard index (HI) of PAEs was low to medium (0.098<HI < 0.897). The risk of MPs pollution in JZB, as indicated by Pollution Load Index (PLI), was moderate (PLIJZB = 11.76), and mainly due to polyvinyl chloride.< Réduire