Enzymes’ Power for Plastics Degradation
CRAMAIL, Henri
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
TATON, Daniel
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
< Réduire
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Langue
EN
Article de revue
Ce document a été publié dans
Chemical Reviews. 2023-03-14, vol. 123, n° 9, p. 5612-5701
Résumé en anglais
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, ...Lire la suite >
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.< Réduire
Unités de recherche