Stability Analysis and Numerical Study of Stefan Problems for Embedded Computation of Moving Internal Boundaries
CARLIER, Tiffanie
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Université de Bordeaux [UB]
Institut de Mathématiques de Bordeaux [IMB]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Université de Bordeaux [UB]
Institut de Mathématiques de Bordeaux [IMB]
BEAUGENDRE, Heloise
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Équipe Calcul scientifique et Modélisation
Voir plus >
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Équipe Calcul scientifique et Modélisation
CARLIER, Tiffanie
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Université de Bordeaux [UB]
Institut de Mathématiques de Bordeaux [IMB]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Université de Bordeaux [UB]
Institut de Mathématiques de Bordeaux [IMB]
BEAUGENDRE, Heloise
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Équipe Calcul scientifique et Modélisation
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Équipe Calcul scientifique et Modélisation
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Équipe Calcul scientifique et Modélisation
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Équipe Calcul scientifique et Modélisation
Langue
en
Communication dans un congrès
Ce document a été publié dans
CFC 2023 - 22nd Computational Fluids Conference, 2023-04-25, Cannes.
Résumé en anglais
Classical finite element methods used to model problems with internal boundaries rely on body fitted computational grids. However, those methods encounter computational challenges when the boundaries are deformed or moved ...Lire la suite >
Classical finite element methods used to model problems with internal boundaries rely on body fitted computational grids. However, those methods encounter computational challenges when the boundaries are deformed or moved substantially. Embedded methods avoid boundary fitted grids in favor of immersing the boundary in a pre-existing fixed grid. In this category of methods we are interested in the shifted boundary method, where the physical boundary is replaced by a surrogate boundary, which is updated after each displacement of the physical boundary [1, 2]. Here, we examine the application of this technique to a Stefan problem. In the formulation, the moving boundary progresses at a speed determined by the normal flux jump and is a source of instabilities which can impact the solution on the whole domain. To understand this, a linear stability analysis of the numerical technique is performed [3]. The stability analysis gives an understanding of the terms necessary to add in the weak formulation for its stabilization. A comparison is made with and without these terms to highlight the improvement in accuracy of the method.< Réduire
Origine
Importé de halUnités de recherche