Random survival forests with multivariate longitudinal endogenous covariates
GENUER, Robin
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Voir plus >
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
GENUER, Robin
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
< Réduire
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Langue
EN
Article de revue
Ce document a été publié dans
Statistical Methods in Medical Research. 2023-12-01, vol. 32, n° 12, p. 2331-2346
Résumé en anglais
Predicting the individual risk of clinical events using the complete patient history is a major challenge in personalized medicine. Analytical methods have to account for a possibly large number of time-dependent predictors, ...Lire la suite >
Predicting the individual risk of clinical events using the complete patient history is a major challenge in personalized medicine. Analytical methods have to account for a possibly large number of time-dependent predictors, which are often characterized by irregular and error-prone measurements, and are truncated early by the event. In this work, we extended the competing-risk random survival forests to handle such endogenous longitudinal predictors when predicting event probabilities. The method, implemented in the R package DynForest, internally transforms the time-dependent predictors at each node of each tree into time-fixed features (using mixed models) that can then be used as splitting candidates. The final individual event probability is computed as the average of leaf-specific Aalen-Johansen estimators over the trees. Using simulations, we compared the performances of DynForest to accurately predict an event with (i) a joint modeling alternative when considering two longitudinal predictors only, and with (ii) a regression calibration method that ignores the informative truncation by the event when dealing with a large number of longitudinal predictors. Through an application in dementia research, we also illustrated how DynForest can be used to develop a dynamic prediction tool for dementia from multimodal repeated markers, and quantify the importance of each marker.< Réduire
Mots clés en anglais
Individual dynamic prediction
Multivariate predictors
Random survival forest
Longitudinal data
Survival data
Competing risks
Unités de recherche