Early Administration of the Phytocannabinoid Cannabidivarin Prevents the Neurobehavioral Abnormalities Associated with the Fmr1-KO Mouse Model of Fragile X Syndrome
BELLOCCHIO, Luigi
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
Voir plus >
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
BELLOCCHIO, Luigi
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
< Réduire
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
Langue
EN
Article de revue
Ce document a été publié dans
Cells. 2023-07-25, vol. 12, n° 15, p. 1927
Résumé en anglais
Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value ...Lire la suite >
Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.< Réduire
Mots clés en anglais
Phytocannabinoids
Fmr1
Mouse behavior
Neurodevelopmental disorders
Interleukins
Neurotrophins
Project ANR
Bordeaux Region Aquitaine Initiative for Neuroscience - ANR-10-LABX-0043