Model Independent Approach of the JUNO $^8$B Solar Neutrino Program
Langue
en
Document de travail - Pré-publication
Résumé en anglais
The physics potential of detecting $^8$B solar neutrinos is exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model independent manner by using three distinct channels of the charged-current (CC), ...Lire la suite >
The physics potential of detecting $^8$B solar neutrinos is exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model independent manner by using three distinct channels of the charged-current (CC), neutral-current (NC) and elastic scattering (ES) interactions. Due to the largest-ever mass of $^{13}$C nuclei in the liquid-scintillator detectors and the potential low background level, $^8$B solar neutrinos would be observable in the CC and NC interactions on $^{13}$C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC and ES channels to guarantee the $^8$B solar neutrino observation. From the sensitivity studies performed in this work, we show that one can reach the precision levels of 5%, 8% and 20% for the $^8$B neutrino flux, $\sin^2\theta_{12}$, and $\Delta m^2_{21}$, respectively, using ten years of JUNO data. It would be unique and helpful to probe the details of both solar physics and neutrino physics. In addition, when combined with SNO, the world-best precision of 3% is expected for the $^8$B neutrino flux measurement.< Réduire
Mots clés en anglais
neutrino
solar
flux
background
low
JUNO
muon
observatory
SNO
sensitivity
elastic scattering
charged current
nucleus
suppression
neutral current
Origine
Importé de halUnités de recherche
Publications correspondantes
Affichage des publications liées par titre, auteur, créateur et discipline