Manipulation optique de vortex d’Abrikosov individuels
MAGRINI, William
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
MAGRINI, William
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
< Réduire
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Langue
fr
Thèses de doctorat
École doctorale
École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)Résumé
Ce travail de thèse est principalement axé sur le développement d’une nouvelle méthode de manipulation de vortex d’Abrikosov individuels dans les supraconducteurs de type II. Cette méthode, rapide, efficace et précise, est ...Lire la suite >
Ce travail de thèse est principalement axé sur le développement d’une nouvelle méthode de manipulation de vortex d’Abrikosov individuels dans les supraconducteurs de type II. Cette méthode, rapide, efficace et précise, est basée sur l’optique en champ lointain et repose sur l’échauffement local du supraconducteur sous l’action d’un faisceau laser focalisé. Elle apporte une excellente alternative aux techniques existantes de manipulation de vortex, toutes basées sur l’utilisation de sondes locales, et donc intrinsèquement lentes et difficiles à mettre en oeuvre dans un environnement cryogénique. La combinaison de cette méthode à une technique d’imagerie magnéto-optique performante permet de déplacer des vortex individuels avec un taux de réussite de 100% et sur de grandes échelles limitées uniquement par le champ de l’objectif de microscope. Les vitesses de manipulation atteintes sont élevées, de l’ordre de 10 mm.s-1, mais encore limitées par l’instrumentation utilisée et loin des limites fondamentales offertes par cette méthode, estimées au km.s-1. La méthode de manipulation optique permet aussi de mesurer la distribution des forces de piégeage de chaque vortex d’un échantillon. En utilisant des puissances de chauffage laser permettant de dépasser localement la température critique, nous avons également pu étudier la pénétration des vortex à l’interface entre une zone normale et une zone supraconductrice.Durant ces travaux, nous avons aussi eu l’opportunité de mettre en évidence, par spectroscopie de molécules uniques, l’effet flexomagnétoélectrique dans un matériau multiferroïque, en employant un supraconducteur de type I comme générateur de champ magnétique inhomogène. Enfin, nous proposons à la fin de ce mémoire un concept de jonction Josephson créée tout optiquement, et dont les propriétés seraient contrôlables en temps réel par laser.< Réduire
Résumé en anglais
This thesis focuses on the development of a new manipulation technique to handle single Abrikosov vortices in type II superconductors. This fast, efficient and precise method is based on far field optics and rests on the ...Lire la suite >
This thesis focuses on the development of a new manipulation technique to handle single Abrikosov vortices in type II superconductors. This fast, efficient and precise method is based on far field optics and rests on the local temperature elevation produced by a focused laser beam. It brings an excellent alternative to the existing techniques which are all based on local probes and thus heavy to implement in a cryogenic environment. The combination of this method with an efficient magneto-optical imaging system allows us to manipulate single vortices with a 100% rate of success on a large scale only limited by the field of view of the microscope objective. Manipulation speeds are high, of the order of 10 mm.s-1, but still limited by our setup and far from the fundamental limits offered by this technique, estimated to the km.s-1. This manipulation technique also allows to measure the pinning force of any single vortex in a superconducting sample. By using a high enough laser power which locally pushes the temperature above the critical temperature, we could also study the vortex penetration at the interface between normal and superconducting areas.In the course of this work, we also evidenced, with single molecule spectroscopy, the flexomagnetoelectric effect in a multiferoic material, by using a type I superconductor as a source of inhomogeneous magnetic field. Finally, we propose at the end of the manuscript the new concept of an optically created Josephson junctions, whose properties could be controlled in real time just with a laser beam.< Réduire
Mots clés
Vortex d’Abrikosov
Pinces optiques
Matériaux multiferroïques
Molécules individuelles
Jonctions Josephson
Mots clés en anglais
Josephson junctions
Single molecules
Multiferroic materials
Optical tweezers
Abrikosov vortices
Origine
Importé de halUnités de recherche