Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter
LANDRAGIN, Arnaud
Laboratoire national de métrologie et d'essais - Systèmes de Référence Temps-Espace [LNE - SYRTE]
< Réduire
Laboratoire national de métrologie et d'essais - Systèmes de Référence Temps-Espace [LNE - SYRTE]
Langue
en
Article de revue
Ce document a été publié dans
Scientific Reports. 2018-08, vol. 8, p. 12300
Nature Publishing Group
Résumé en anglais
Gravimetry is a well-established technique for the determination of sub-surface mass distribution needed in several fields of geoscience, and various types of gravimeters have been developed over the last 50 years. Among ...Lire la suite >
Gravimetry is a well-established technique for the determination of sub-surface mass distribution needed in several fields of geoscience, and various types of gravimeters have been developed over the last 50 years. Among them, quantum gravimeters based on atom interferometry have shown top-level performance in terms of sensitivity, long-term stability and accuracy. Nevertheless, they have remained confined to laboratories due to their complex operation and high sensitivity to the external environment. Here we report on a novel, transportable, quantum gravimeter that can be operated under real world conditions by non-specialists, and measure the absolute gravitational acceleration continuously with a long-term stability below 10 nm.s−2 (1 μGal). It features several technological innovations that allow for high-precision gravity measurements, while keeping the instrument light and small enough for field measurements. The instrument was characterized in detail and its stability was evaluated during a month-long measurement campaign.< Réduire
Origine
Importé de halUnités de recherche