Loading and cooling in an optical trap via hyperfine dark states
CAREY, Max
School of Physics and Astronomy [Southampton]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Voir plus >
School of Physics and Astronomy [Southampton]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
CAREY, Max
School of Physics and Astronomy [Southampton]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
School of Physics and Astronomy [Southampton]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
MINARDI, Francesco
Istituto Nazionale di Ottica [Firenze] [INO-CNR]
Dipartimento di Fisica e Astronomia [Bologna]
< Réduire
Istituto Nazionale di Ottica [Firenze] [INO-CNR]
Dipartimento di Fisica e Astronomia [Bologna]
Langue
en
Article de revue
Ce document a été publié dans
Physical Review Research. 2020-02-26, vol. 2, n° 013212
American Physical Society
Résumé en anglais
We present a novel optical cooling scheme capable of loading and cooling atoms directly inside deep optical dipole traps utilizing hyperfine dark states. In the presence of strong light shifts of the upper excited states, ...Lire la suite >
We present a novel optical cooling scheme capable of loading and cooling atoms directly inside deep optical dipole traps utilizing hyperfine dark states. In the presence of strong light shifts of the upper excited states, this allows the velocity selective dark-state cooling of atoms into the conservative potential without loss of atoms. We report the lossless optical cooling inside the trap with a seven-fold increase in the number of atoms loaded. Our findings open the door to all-optical cooling of trapped atoms and molecules which lack the closed cycling transitions normally needed to achieve low temperatures and the high initial densities required for evaporative cooling.< Réduire
Origine
Importé de halUnités de recherche