Physics of growing biological tissues: the complex cross-talk between cell activity, growth and resistance
BEN AMAR, Martine
Biophysique et Neuroscience Théoriques
Sorbonne Université - Faculté de Médecine [SU FM]
Biophysique et Neuroscience Théoriques
Sorbonne Université - Faculté de Médecine [SU FM]
BEN AMAR, Martine
Biophysique et Neuroscience Théoriques
Sorbonne Université - Faculté de Médecine [SU FM]
< Réduire
Biophysique et Neuroscience Théoriques
Sorbonne Université - Faculté de Médecine [SU FM]
Langue
en
Article de revue
Ce document a été publié dans
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2019, vol. 377, n° 2144, p. 20180070
Royal Society, The
Résumé en anglais
For many organisms, shapes emerge from growth, which generates stresses, which in turn can feedback on growth. In this review, theoretical methods to analyse various aspects of morphogenesis are discussed with the aim to ...Lire la suite >
For many organisms, shapes emerge from growth, which generates stresses, which in turn can feedback on growth. In this review, theoretical methods to analyse various aspects of morphogenesis are discussed with the aim to determine the most adapted method for tissue mechanics. We discuss the need to work at scales intermediate between cells and tissues and emphasize the use of finite elasticity for this. We detail the application of these ideas to four systems: active cells embedded in tissues, brain cortical convolutions, the cortex of Caenorhabditis elegans during elongation and finally the proliferation of epithelia on extracellular matrix. Numerical models well adapted to inhomogeneities are also presented.< Réduire
Mots clés en anglais
morphogenesis
tissue mechanics
tissue growth
active and multi-scale rheology
finite elasticity
Origine
Importé de halUnités de recherche