Post-clustering difference testing: valid inference and practical considerations
HIVERT, Benjamin
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
THIEBAUT, Rodolphe
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Voir plus >
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
HIVERT, Benjamin
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
THIEBAUT, Rodolphe
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
HEJBLUM, Boris
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
< Réduire
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Langue
EN
Article de revue
Ce document a été publié dans
Computational Statistics and Data Analysis.
Date de soutenance
2024Résumé en anglais
Clustering is part of unsupervised analysis methods that consist in grouping samples into homogeneous and separate subgroups of observations also called clusters. To interpret the clusters, statistical hypothesis testing ...Lire la suite >
Clustering is part of unsupervised analysis methods that consist in grouping samples into homogeneous and separate subgroups of observations also called clusters. To interpret the clusters, statistical hypothesis testing is often used to infer the variables that significantly separate the estimated clusters from each other. However, data-driven hypotheses are considered for the inference process, since the hypotheses are derived from the clustering results. This double use of the data leads traditional hypothesis test to fail to control the Type I error rate particularly because of uncertainty in the clustering process and the potential artificial differences it could create. We propose three novel statistical hypothesis tests which account for the clustering process. Our tests efficiently control the Type I error rate by identifying only variables that contain a true signal separating groups of observations.< Réduire
Mots clés en anglais
Clustering
Hypothesis testing
Double-dipping
Circular analysis
Selective inference
Multimodality test
Dip Test
Unités de recherche