Metadatos
Mostrar el registro completo del ítemCompartir este ítem
DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation
TOURDIAS, Thomas
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
Leer más >
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
TOURDIAS, Thomas
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
MANJON, Jose V.
Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
< Leer menos
Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
Idioma
EN
Document de travail - Pré-publication
Este ítem está publicado en
p. 102312
Resumen en inglés
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in ...Leer más >
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG’16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice. © 2021< Leer menos
Palabras clave en inglés
Deep Learning
Convolutional Neural Network
Domain Generalization
Learning Generalization
Lesion Segmentations
Multiple Sclerose Segmentation
Multiple Sclerosis
Multiple Sclerosis Lesions
Segmentation Accuracy
Convolutional Neural Networks
Convolutional Neural Network
Feature Extraction
Image Quality
Image Segmentation
Prediction
Three-Dimensional Imaging
Brain
Diagnostic Imaging
Image Processing
Pathology
Procedures
Humans
Computer-Assisted
Neural Networks
Proyecto ANR
Apprentissage profond pour la volumétrie cérébrale : vers le BigData en neuroscience - ANR-18-CE45-0013
Translational Research and Advanced Imaging Laboratory - ANR-10-LABX-0057
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Translational Research and Advanced Imaging Laboratory - ANR-10-LABX-0057
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Centros de investigación