Métadonnées
Afficher la notice complètePartager cette publication !
Screening of the Toxicity of Polystyrene Nano-and Microplastics Alone and in Combination with Benzo(a)pyrene in Brine Shrimp Larvae and Zebrafish Embryos
Langue
EN
Article de revue
Ce document a été publié dans
Nanomaterials. 2022-03-12, vol. 12, n° 6
Résumé en anglais
The occurrence of nanoplastics (NPs) and microplastics (MPs) in aquatic ecosystems and their capacity to sorb hydrophobic pollutants is nowadays an issue of great concern. This study aimed to assess the potential bioavailability ...Lire la suite >
The occurrence of nanoplastics (NPs) and microplastics (MPs) in aquatic ecosystems and their capacity to sorb hydrophobic pollutants is nowadays an issue of great concern. This study aimed to assess the potential bioavailability and acute toxicity of polystyrene (PS) NPs (50 and 500 nm) and of MPs (4.5 µm), alone and with sorbed benzo(a)pyrene (B(a)P), in the embryo/larval stages of brine shrimps and zebrafish. Exposure to pristine plastics up to 50.1 mg PS/L did not cause significant impact on brine shrimp survival, while some treatments of plastics-B(a)P and all concentrations of B(a)P (0.1–10 mg/L) resulted acutely toxic. In zebrafish, only the highest concentrations of MPs-B(a)P and B(a)P caused a significant increase of malformation prevalence. Ingestion of NPs was observed by 24–48 h of exposure in the two organisms (from 0.069 to 6.87 mg PS/L). In brine shrimps, NPs were observed over the body surface and within the digestive tract, associated with feces. In zebrafish, NPs were localized in the eyes, yolk sac, and tail at 72 h, showing their capacity to translocate and spread into the embryo. MP ingestion was only demonstrated for brine shrimps. In zebrafish embryos exposed to plastics-B(a)P, B(a)P appeared in the yolk sac of the embryos. The presence of B(a)P was also noticeable in brine shrimps exposed to 500 nm NPs-B(a)P. In conclusion, NPs entered and spread into the zebrafish embryo and PS NPs, and MPs were successful vectors of B(a)P to brine shrimp and zebrafish embryos. Particle size played a significant role in explaining the toxicity of plastics–B(a)P. Our study provides support for the idea that plastics may pose a risk to aquatic organisms when combined with persistent organic pollutants such as B(a)P. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.< Réduire
Mots clés en anglais
Polystyrene
Nanoplastics
Microplastics
Benzo(a)pyrene
Zebrafish embryos
Brine shrimp larvae
Acute toxicity
Bioavailability
Project ANR
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
COntinental To coastal Ecosystems: evolution, adaptability and governance - ANR-10-LABX-0045
COntinental To coastal Ecosystems: evolution, adaptability and governance - ANR-10-LABX-0045