Silencing of the GDP-d-mannose 3,5-Epimerase Affects the Structure and Cross-linking of the Pectic Polysaccharide Rhamnogalacturonan II and Plant Growth in Tomato
Langue
en
Article de revue
Ce document a été publié dans
Journal of Biological Chemistry. 2011-03-04, vol. 286, n° 10, p. 8014 - 8020
American Society for Biochemistry and Molecular Biology
Résumé en anglais
L-galactose (L-Gal), a monosaccharide involved in L-ascorbate and rhamnogalacturonan II (RG-II) biosynthesis in plants, is produced in the cytosol by a GDP-D-mannose 3,5-epimerase (GME). It has been recently reported that ...Lire la suite >
L-galactose (L-Gal), a monosaccharide involved in L-ascorbate and rhamnogalacturonan II (RG-II) biosynthesis in plants, is produced in the cytosol by a GDP-D-mannose 3,5-epimerase (GME). It has been recently reported that the partial inactivation of GME induced growth defects affecting both cell division and cell expansion (Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., and Baldet, P. (2009) Plant J. 60, 499-508). In the present study, we show that the silencing of the two GME genes in tomato leaves resulted in approximately a 60% decrease in terminal L-Gal content in the side chain A of RG-II as well as in a lower capacity of RG-II to perform in muro cross-linking. In addition, we show that unlike supplementation with L-Gal or ascorbate, supplementation of GME-silenced lines with boric acid was able to restore both the wild-type growth phenotype of tomato seedlings and an efficient in muro boron-mediated cross-linking of RG-II. Our findings suggest that developmental phenotypes in GME-deficient lines are due to the structural alteration of RG-II and further underline the crucial role of the cross-linking of RG-II in the formation of the pectic network required for normal plant growth and development< Réduire
Mots clés en anglais
5-Epimerase
l-Galactose
Rhamnogalacturonan II
GDP-d-mannose 3
Cell Wall Galactose
Carbohydrate Structure
Carbohydrate Function
Carbohydrate Biosynthesis
Origine
Importé de halUnités de recherche