Fragmented-condensate solid of dipolar excitons
ANDREEV, S. V.
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Laboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Laboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
ANDREEV, S. V.
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Laboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
< Réduire
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Laboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
Langue
en
Article de revue
Ce document a été publié dans
Physical Review B: Condensed Matter and Materials Physics (1998-2015). 2017-05-26, vol. 95, n° 18, p. 184519
American Physical Society
Résumé en anglais
We discuss a possible link between the recently observed macroscopic ordering of ultracold dipolar excitons (MOES) and the phenomenon of supersolidity. In the dilute limit we predict a stable supersolid state for a ...Lire la suite >
We discuss a possible link between the recently observed macroscopic ordering of ultracold dipolar excitons (MOES) and the phenomenon of supersolidity. In the dilute limit we predict a stable supersolid state for a quasi-one-dimensional system of bosonic dipoles characterized by two-and three-body contact repulsion. We phenomenologically extend our theory to the strongly-correlated regime and find a critical value of the contact interaction parameter at which the supersolid exhibits a quantum phase transition to a fragmented state. The wavelength of the fragmented-condensate solid is defined by the balance between the quantum pressure and the entropy due to fluctuations of the relative phases between the fragments. Our model appears to be in good agreement with the relevant experimental data, including the very recent results on commensurability effect and wavelength of the MOES.< Réduire
Origine
Importé de halUnités de recherche