Harnessing Reversible Electronic Energy Transfer: From Molecular Dyads to Molecular Machines
DENISOV, Sergey A.
Institut des Sciences Moléculaires [ISM]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Voir plus >
Institut des Sciences Moléculaires [ISM]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
DENISOV, Sergey A.
Institut des Sciences Moléculaires [ISM]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
< Réduire
Institut des Sciences Moléculaires [ISM]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Langue
en
Article de revue
Ce document a été publié dans
ChemPhysChem. 2016, vol. 17, n° 12, p. 1794-1804
Wiley-VCH Verlag
Résumé en anglais
Reversible electronic energy transfer (REET) may be instilled in bi-/multichromophoric molecule-based systems, following photoexcitation, upon judicious structural integration of matched chromophores. This leads to a new ...Lire la suite >
Reversible electronic energy transfer (REET) may be instilled in bi-/multichromophoric molecule-based systems, following photoexcitation, upon judicious structural integration of matched chromophores. This leads to a new set of photophysical properties for the ensemble, which can be fully characterized by steady-state and time-resolved spectroscopic methods. Herein, we take a comprehensive look at progress in the development of this type of supermolecule in the last five years, which has seen systems evolve from covalently tethered dyads to synthetic molecular machines, exemplified by two different pseudorotaxanes. Indeed, REET holds promise in the control of movement in molecular machines, their assembly/disassembly, as well as in charge separation.< Réduire
Mots clés en anglais
Foldaxanes
Molecular machines
Reversible electronic energy transfer
Time-resolved spectroscopy
Transition metal complexes
Project ANR
Architectures à base de foldamères pour le transport d'electrons - ANR-12-BS08-0007
Origine
Importé de halUnités de recherche