Thue equations with composite fields
Langue
en
Article de revue
Ce document a été publié dans
Acta Arithmetica. 1999, vol. 88, n° 4, p. 311--326
Instytut Matematyczny PAN
Résumé en anglais
We consider the Thue equation $F(x,y)=a$, where $F$ is an irreducible form of degree $n\geq 3$.We describe a method of resolution which takes advantage of the fact that the number field generated by a root of $F(1,y)$ has ...Lire la suite >
We consider the Thue equation $F(x,y)=a$, where $F$ is an irreducible form of degree $n\geq 3$.We describe a method of resolution which takes advantage of the fact that the number field generated by a root of $F(1,y)$ has small subfields. We illustrate this method by solving several real cyclotomic equations of degrees as large as 2505. || Considérons l'équation de Thue $F(x,y)=a$, avec $F$ une forme irréductible homogène de degré $n\geq 3$. Nous décrivons une méthode de résolution permettant de tirer profit de l'existence de petits sous-corps du corps de nombres engendré par une racine< Réduire
Mots clés
Equations de Thue
diophantine equations
Thue equations
équations diophantiennes
Origine
Importé de halUnités de recherche