Notes on Lieb-Thirring type inequality for a complex perturbation of fractional Schrödinger operator.
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
For $s>0$, let $H_0=(-\Delta)^s$ be the fractional Laplacian. In this paper, we obtainLieb-Thirring type inequalities for the fractional Schr\"odinger operator defined as $H=H_0+V$,where $V \in L^p(\mathbb{R}^d), p\ge 1, ...Leer más >
For $s>0$, let $H_0=(-\Delta)^s$ be the fractional Laplacian. In this paper, we obtainLieb-Thirring type inequalities for the fractional Schr\"odinger operator defined as $H=H_0+V$,where $V \in L^p(\mathbb{R}^d), p\ge 1, d\ge 1,$ is a complex-valued potential.Our methods are based on results of articles by Borichev-Golinskii-Kupin \cite{BoGoKu} and Hansmann \cite{Ha1}.< Leer menos
Palabras clave en inglés
Fractional Schrödinger operator
complex perturbation
discrete spectrum
Lieb-Thirring type inequality
conformal mapping
Orígen
Importado de HalCentros de investigación