New Synthetic Routes towards Soluble and Dissymmetric Triphenodioxazine Dyes Designed for Dye-Sensitized Solar Cells
Langue
en
Article de revue
Ce document a été publié dans
Chemistry - A European Journal. 2014, vol. 20, n° 13, p. 3678-3688
Wiley-VCH Verlag
Résumé en anglais
New π-conjugated structures are constantly the subject of research in dyes and pigments industry and electronic organic field. In this context, the triphenodioxazine (TPDO) core has often been used as efficient photostable ...Lire la suite >
New π-conjugated structures are constantly the subject of research in dyes and pigments industry and electronic organic field. In this context, the triphenodioxazine (TPDO) core has often been used as efficient photostable pigments and once integrated in air stable n-type organic field-effect transistor (OFET). However, little attention has been paid to the TPDO core as soluble materials for optoelectronic devices, possibly due to the harsh synthetic conditions and the insolubility of many compounds. To benefit from the photostability of TPDO in dye-sensitized solar cells (DSCs), an original synthetic pathway has been established to provide soluble and dissymmetric molecules applied to a suitable design for the sensitizers of DSC. The study has been pursued by the theoretical modeling of opto-electronic properties, the optical and electronic characterizations of dyes and elaboration of efficient devices. The discovery of new synthetic pathways opens the way to innovative designs of TPDO for materials used in organic electronics.< Réduire
Project ANR
Matériaux hybrides fonctionnels pour la conversion de l'énergie solaire en électricité - ANR-10-BLAN-0938
Origine
Importé de halUnités de recherche