A minimal rupture cascade model for living cell plasticity
LAPERROUSAZ, Bastien
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Laboratoire de Biologie à Grande Échelle [BGE - UMR S1038]
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Centre Hospitalier Lyon Sud [CHU - HCL] [CHLS]
Voir plus >
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Laboratoire de Biologie à Grande Échelle [BGE - UMR S1038]
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Centre Hospitalier Lyon Sud [CHU - HCL] [CHLS]
LAPERROUSAZ, Bastien
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Laboratoire de Biologie à Grande Échelle [BGE - UMR S1038]
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Centre Hospitalier Lyon Sud [CHU - HCL] [CHLS]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Laboratoire de Biologie à Grande Échelle [BGE - UMR S1038]
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Centre Hospitalier Lyon Sud [CHU - HCL] [CHLS]
NICOLINI, Franck
Service d’Hématologie [Centre Hospitalier Lyon Sud - HCL]
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Université de Lyon
Service d’Hématologie [Centre Hospitalier Lyon Sud - HCL]
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Université de Lyon
SATTA, Véronique Maguer
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Université de Lyon
Centre de Recherche en Cancérologie de Lyon [UNICANCER/CRCL]
Université de Lyon
ARNÉODO, Alain
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
ARGOUL, Françoise
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
< Réduire
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Langue
en
Article de revue
Ce document a été publié dans
New Journal of Physics. 2018, vol. 20, n° 5, p. 053057
Institute of Physics: Open Access Journals
Résumé en anglais
Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34+ cells isolated from healthy and leukemic bone marrows ...Lire la suite >
Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34+ cells isolated from healthy and leukemic bone marrows in the highly nonlinear elasto-plastic regime, by poking their perinuclear region with a sharp AFM cantilever tip. We use the wavelet transform mathematical microscope to identify singular events in the force-indentation curves induced by local rupture events in the cytoskeleton (CSK). We distinguish two types of rupture events, brittle failures likely corresponding to irreversible ruptures in a stiff and highly cross-linked CSK and ductile failures resulting from dynamic cross-linker unbindings during plastic deformation without loss of CSK integrity. We propose a stochastic multiplicative cascade model of mechanical ruptures that reproduces quantitatively the experimental distributions of the energy released during these events, and provides some mathematical and mechanistic understanding of the robustness of the log-normal statistics observed in both brittle and ductile situations. We also show that brittle failures are relatively more prominent in leukemia than in healthy cells suggesting their greater fragility.< Réduire
Origine
Importé de halUnités de recherche