Sin título
BRUNEAU, Charles-Henri
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
BRUNEAU, Charles-Henri
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Computational Physics. 2009, vol. 228, n° 2, p. 516-538
Elsevier
Resumen en inglés
This paper focuses on improving the stability as well as the approximation properties of Reduced Order Models (ROM) based on Proper Orthogonal Decomposition (POD). The ROM is obtained by seeking a solution belonging to the ...Leer más >
This paper focuses on improving the stability as well as the approximation properties of Reduced Order Models (ROM) based on Proper Orthogonal Decomposition (POD). The ROM is obtained by seeking a solution belonging to the POD subspace and that at the same time minimizes the Navier-Stokes residuals. We propose a modified ROM that directly incorporates the pressure term in the model. The ROM is then stabilized making use of a method based on the fine scale equations. An improvement of the POD solution subspace is performed thanks to an hybrid method that couples direct numerical simulations and reduced order model simulations. The methods proposed are tested on the two-dimensional confined square cylinder wake flow in laminar regime.< Leer menos
Palabras clave en italiano
Functional subspace improvement
Proper Orthogonal Decomposition
Reduced Order Model
Stabilization
Orígen
Importado de HalCentros de investigación