Stability and instability results for standing waves of a quasilinear Schrodinger equations
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
< Leer menos
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Idioma
en
Article de revue
Este ítem está publicado en
Nonlinearity. 2010, vol. 23, n° 6, p. 1353-1385
IOP Publishing
Resumen en inglés
We study a class of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using gauge transforms and a derivation process we solve, under some regularity assumptions, the Cauchy ...Leer más >
We study a class of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using gauge transforms and a derivation process we solve, under some regularity assumptions, the Cauchy problem. Then, by means of variational methods, we study the existence, the orbital stability and instability of standing waves which minimize some associated energy.< Leer menos
Orígen
Importado de HalCentros de investigación