Stability and instability results for standing waves of a quasilinear Schrodinger equations
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Langue
en
Article de revue
Ce document a été publié dans
Nonlinearity. 2010, vol. 23, n° 6, p. 1353-1385
IOP Publishing
Résumé en anglais
We study a class of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using gauge transforms and a derivation process we solve, under some regularity assumptions, the Cauchy ...Lire la suite >
We study a class of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using gauge transforms and a derivation process we solve, under some regularity assumptions, the Cauchy problem. Then, by means of variational methods, we study the existence, the orbital stability and instability of standing waves which minimize some associated energy.< Réduire
Origine
Importé de halUnités de recherche