Moderate deviations for the Durbin-Watson statistic related to the first-order autoregressive process
PROÏA, Frédéric
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
PROÏA, Frédéric
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
The purpose of this paper is to investigate moderate deviations for the Durbin-Watson statistic associated with the stable first-order autoregressive process where the driven noise is also given by a first-order autoregressive ...Lire la suite >
The purpose of this paper is to investigate moderate deviations for the Durbin-Watson statistic associated with the stable first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. We first establish a moderate deviation principle for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated with the driven noise. It enables us to provide a moderate deviation principle for the Durbin-Watson statistic in the easy case where the driven noise is normally distributed and in the more general case where the driven noise satisfies a less restrictive Chen-Ledoux type condition.< Réduire
Mots clés en anglais
Durbin-Watson statistic
Moderate deviation principle
First-order autoregressive process
Serial correlation
Origine
Importé de halUnités de recherche