Non shape regular domain decompositions: an analysis using a stable decomposition in $H_0^1$
SANTUGINI-REPIQUET, Kévin
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
SANTUGINI-REPIQUET, Kévin
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Domain Decomposition Methods in Science and Engineerings XX, Domain Decomposition Methods in Science and Engineerings XX, 20th International Conference on Domain Decomposition Methods, 2011-02-07, La Jolla. 2013-07-03, vol. 91, p. 485--492
Springer
Résumé en anglais
In this paper, we establish the existence of a stable decomposition in the Sobolev space $H^1_0$ for domain decompositions which are not shape regular in the usual sense. In particular, we consider domain decompositions ...Lire la suite >
In this paper, we establish the existence of a stable decomposition in the Sobolev space $H^1_0$ for domain decompositions which are not shape regular in the usual sense. In particular, we consider domain decompositions where the largest subdomain is significantly larger than the smallest subdomain. We provide an explicit upper bound for the stable decomposition that is independant of the ratio between the diameter of the largest and the smallest subdomain.< Réduire
Origine
Importé de halUnités de recherche