A Rademacher-Menchov approach for random coefficient bifurcating autoregressive processes
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
BLANDIN, Vassili
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
BLANDIN, Vassili
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
We investigate the asymptotic behavior of the least squares estimator of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and environmental effects, ...Lire la suite >
We investigate the asymptotic behavior of the least squares estimator of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and environmental effects, we establish the almost sure convergence of our estimates. In addition, we also prove a quadratic strong law and central limit theorems. Our approach mainly relies on asymptotic results for vector-valued martingales together with the well-known Rademacher-Menchov theorem.< Réduire
Origine
Importé de halUnités de recherche