Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans
KALINICHEVA, Ekaterina
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
Voir plus >
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
KALINICHEVA, Ekaterina
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
< Réduire
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
Langue
en
Communication dans un congrès
Ce document a été publié dans
2022 IEEE/CVF Conference on Computer VIsion and Pattern Recognition Workshops, 2022 IEEE/CVF Conference on Computer VIsion and Pattern Recognition Workshops, IEEE/CVF Conference on Computer VIsion and Pattern Recognition Workshops, 2022-06-19, New Orleans.
Résumé en anglais
The analysis of the multi-layer structure of wild forests is an important challenge of automated large-scale forestry. While modern aerial LiDARs offer geometric information across all vegetation layers, most datasets and ...Lire la suite >
The analysis of the multi-layer structure of wild forests is an important challenge of automated large-scale forestry. While modern aerial LiDARs offer geometric information across all vegetation layers, most datasets and methods focus only on the segmentation and reconstruction of the top of canopy. We release WildForest3D, which consists of 29 study plots and over 2000 individual trees across 47 000m 2 with dense 3D annotation, along with occupancy and height maps for 3 vegetation layers: ground vegetation, understory, and overstory. We propose a 3D deep network architecture predicting for the first time both 3D pointwise labels and high-resolution layer occupancy rasters simultaneously. This allows us to produce a precise estimation of the thickness of each vegetation layer as well as the corresponding watertight meshes, therefore meeting most forestry purposes. Both the dataset and the model are released in open access: https://github.com/ ekalinicheva/multi_layer_vegetation.< Réduire
Origine
Importé de halUnités de recherche