La0.5Sr0.2TiO3-δ perovskite as anode material for solid oxide fuel cells
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Fuel Cell Science and Technology. 2014, vol. 11, n° 4, p. 041006 (6 p.)
American Society of Mechanical Engineers
Resumen en inglés
Thermal, electrical, and electrocatalytical properties of the oxygen deficient La0.5Sr0.2TiO2.95 perovskite are studied in relation to their possible use as solid oxide fuel cell (SOFC) anode material. La0.5Sr0.2TiO2.95 ...Leer más >
Thermal, electrical, and electrocatalytical properties of the oxygen deficient La0.5Sr0.2TiO2.95 perovskite are studied in relation to their possible use as solid oxide fuel cell (SOFC) anode material. La0.5Sr0.2TiO2.95 is chemically stable under air and reduced atmosphere. Its thermal expansion coefficient is close to that of yttrium-stabilized zirconia (YSZ) under air and Ar/H2 (5%). No significant chemical expansion or contraction of La0.5Sr0.2TiO2.95 are observed between air and reduced atmosphere. La0.5Sr0.2TiO2.95 material has an electrical conductivity at 800 °C of 1 S cm−1 under moist hydrogen (H2/H2O (3%)), reaching 10 S cm−1 when LSTO is prereduced under Ar/H2(5%). The polarization resistance of La0.5Sr0.2TiO2.95 at 800 °C under moist hydrogen is about 1.5 Ω cm2, a value which has been obtained when including a thin CGO buffer layer between the dense YSZ electrolyte and the porous electrode.< Leer menos
Palabras clave en español
Temperature
Anodes
Sintering
Electrodes
Solid oxide fuel cells
Electrolytes
Hydrogen
Oxygen
Electrical conductivity
Polarization (Waves)
Orígen
Importado de HalCentros de investigación