Autonomous hydrogen production for proton exchange membrane fuel cells PEMFC
LEGREE, Manuel
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de Chimie Physique des Matériaux [LCPM]
Voir plus >
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de Chimie Physique des Matériaux [LCPM]
LEGREE, Manuel
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de Chimie Physique des Matériaux [LCPM]
< Réduire
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de Chimie Physique des Matériaux [LCPM]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Energy and Power Technology. 2020-04-28, vol. 2, n° 2, p. 1-18
LIDSEN Publishing Inc.
Résumé en anglais
This paper focuses on hydrogen production for green mobility applications (other applications are currently under investigation). Firstly, a brief state of the art of hydrogen generation by hydrolysis with magnesium is ...Lire la suite >
This paper focuses on hydrogen production for green mobility applications (other applications are currently under investigation). Firstly, a brief state of the art of hydrogen generation by hydrolysis with magnesium is shown. The hydrolysis performance of Magnesium powder ball–milled along with different additives (graphite and transition metals TM = Ni, Fe, and Al) is taken for comparison. The best performance was observed with Mg–10 wt.% g mixtures (95% of theoretical hydrogen generation yield in about 3 min). An efficient solution to control this hydrolysis reaction is proposed to produce hydrogen on demand and to feed a PEM fuel cell. Tests on a bench fitted with a 100 W Proton Exchange Membrane (PEM) fuel cell have demonstrated the technological potential of this solution for electric assistance applications in the field of light mobility.< Réduire
Mots clés en anglais
Hydrogen generation
Mg-based materials
hydrolysis reaction
command law
PEMFC
green mobility applications
Origine
Importé de halUnités de recherche