Thermal and Light-Activated Spin Crossover in Iron(III) qnal Complexes
TELFER, Shane
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences
Leer más >
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences
TELFER, Shane
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences
ALKAŞ, Adil
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences
< Leer menos
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences
Idioma
en
Article de revue
Este ítem está publicado en
European Journal of Inorganic Chemistry. 2020, vol. 2020, n° 14, p. 1325-1330
Wiley-VCH Verlag
Resumen en inglés
Three iron(III) complexes, [Fe(qnal)2]Y {qnal = 1‐[(8‐quinolinylimino)methyl]‐2‐naphthalenolate; Y = NO3 1, BPh4·CH2Cl2 2, NCS 3} have been prepared to explore anion effects in spin crossover systems. Structural studies ...Leer más >
Three iron(III) complexes, [Fe(qnal)2]Y {qnal = 1‐[(8‐quinolinylimino)methyl]‐2‐naphthalenolate; Y = NO3 1, BPh4·CH2Cl2 2, NCS 3} have been prepared to explore anion effects in spin crossover systems. Structural studies on 2 reveal supramolecular chains formed by π–π and C–H···π interactions between the [Fe(qnal)2]+ cations. Magnetic susceptibility measurements show the onset of spin crossover in 1 above 200 K, while complete spin crossover is observed in 2 and 3 with T1/2 = 285 and 340 K, respectively. Unusually, 2 also undergoes light‐induced excited spin state trapping (LIESST) at 980 nm with ca. 65 % efficiency and T(LIESST) = 25 K and reverse‐LIESST at 660 nm with full reversibility over many cycles. The results highlight the important influence that the anion has on thermal and light‐activated spin crossover properties.< Leer menos
Orígen
Importado de HalCentros de investigación