Metal-organic magnets with large coercivity and ordering temperatures up to 242°C
PERLEPE, Panagiota
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Voir plus >
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
PERLEPE, Panagiota
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
YQUEL, Morgane
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Centre de Recherche Paul Pascal [CRPP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
PEDERSEN, Kasper
Centre de Recherche Paul Pascal [CRPP]
Danmarks Tekniske Universitet = Technical University of Denmark [DTU]
< Réduire
Centre de Recherche Paul Pascal [CRPP]
Danmarks Tekniske Universitet = Technical University of Denmark [DTU]
Langue
en
Article de revue
Ce document a été publié dans
Science. 2020-10-29, vol. 370, n° 6516, p. 587-592
American Association for the Advancement of Science (AAAS)
Résumé en anglais
Magnets derived from inorganic materials (e.g., oxides, rare-earth–based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, ...Lire la suite >
Magnets derived from inorganic materials (e.g., oxides, rare-earth–based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, these inorganic magnets suffer several drawbacks, including energetically expensive fabrication, limited availability of certain constituent elements, high density, and poor scope for chemical tunability. A promising design strategy for next-generation magnets relies on the versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this approach, we report the general, simple, and efficient synthesis of lightweight, molecule-based magnets by postsynthetic reduction of preassembled coordination networks that incorporate chromium metal ions and pyrazine building blocks. The resulting metal-organic ferrimagnets feature critical temperatures up to 242°C and a 7500-oersted room-temperature coercivity.< Réduire
Origine
Importé de halUnités de recherche