Endogenous assessment of myocardial injury with single-shot model-based non-rigid motion-corrected T1 rho mapping
Langue
EN
Article de revue
Ce document a été publié dans
Journal of Cardiovascular Magnetic Resonance. 2021-10-21, vol. 23, n° 1
Résumé en anglais
Background : Cardiovascular magnetic resonance T1ρ mapping may detect myocardial injuries without exogenous contrast agent. However, multiple co-registered acquisitions are required, and the lack of robust motion correction ...Lire la suite >
Background : Cardiovascular magnetic resonance T1ρ mapping may detect myocardial injuries without exogenous contrast agent. However, multiple co-registered acquisitions are required, and the lack of robust motion correction limits its clinical translation. We introduce a single breath-hold myocardial T1ρ mapping method that includes model-based non-rigid motion correction. Methods : A single-shot electrocardiogram (ECG)-triggered balanced steady state free precession (bSSFP) 2D adiabatic T1ρ mapping sequence that collects five T1ρ-weighted (T1ρw) images with different spin lock times within a single breath-hold is proposed. To address the problem of residual respiratory motion, a unified optimization framework consisting of a joint T1ρ fitting and model-based non-rigid motion correction algorithm, insensitive to contrast change, was implemented inline for fast (~ 30 s) and direct visualization of T1ρ maps. The proposed reconstruction was optimized on an ex vivo human heart placed on a motion-controlled platform. The technique was then tested in 8 healthy subjects and validated in 30 patients with suspected myocardial injury on a 1.5T CMR scanner. The Dice similarity coefficient (DSC) and maximum perpendicular distance (MPD) were used to quantify motion and evaluate motion correction. The quality of T1ρ maps was scored. In patients, T1ρ mapping was compared to cine imaging, T2 mapping and conventional post-contrast 2D late gadolinium enhancement (LGE). T1ρ values were assessed in remote and injured areas, using LGE as reference. Results : Despite breath holds, respiratory motion throughout T1ρw images was much larger in patients than in healthy subjects (5.1 ± 2.7 mm vs. 0.5 ± 0.4 mm, P < 0.01). In patients, the model-based non-rigid motion correction improved the alignment of T1ρw images, with higher DSC (87.7 ± 5.3% vs. 82.2 ± 7.5%, P < 0.01), and lower MPD (3.5 ± 1.9 mm vs. 5.1 ± 2.7 mm, P < 0.01). This resulted in significantly improved quality of the T1ρ maps (3.6 ± 0.6 vs. 2.1 ± 0.9, P < 0.01). Using this approach, T1ρ mapping could be used to identify LGE in patients with 93% sensitivity and 89% specificity. T1ρ values in injured (LGE positive) areas were significantly higher than in the remote myocardium (68.4 ± 7.9 ms vs. 48.8 ± 6.5 ms, P < 0.01). Conclusions : The proposed motion-corrected T1ρ mapping framework enables a quantitative characterization of myocardial injuries with relatively low sensitivity to respiratory motion. This technique may be a robust and contrast-free adjunct to LGE for gaining new insight into myocardial structural disorders.< Réduire
Mots clés en anglais
Model-based
Motion correction
Myocardial
Non-rigid
Parameter mapping
T1ρ mapping
Projet Européen
Electrostructural Tomography - Towards Multiparametric Imaging of Cardiac Electrical Disorders
Project ANR
Plateforme multi-modale d'exploration en cardiologie - ANR-11-EQPX-0030
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
Unités de recherche