Afficher la notice abrégée

hal.structure.identifierAMOR 2020
dc.contributor.authorGAVINO, S.
hal.structure.identifierM2A 2020
dc.contributor.authorDUTREY, A.
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorWAKELAM, V.
hal.structure.identifierM2A 2020
dc.contributor.authorGUILLOTEAU, S.
hal.structure.identifierLaboratoire de mécanique des fluides [LMF]
dc.contributor.authorKOBUS, J.
dc.contributor.authorWOLF, S.
dc.contributor.authorIQBAL, W.
hal.structure.identifierAMOR 2017
dc.contributor.authorDI FOLCO, E.
hal.structure.identifierAMOR 2020
dc.contributor.authorCHAPILLON, E.
dc.contributor.authorPIÉTU, V.
dc.date.issued2021-10
dc.identifier.issn0004-6361
dc.description.abstractEnContext. Grain surface chemistry is fundamental to the composition of protoplanetary disks around young stars.Aims. The temperature of grains depends on their size. We evaluate the impact of this temperature dependence on the disk chemistry.Methods. We modeled a moderately massive disk with 16 different grain sizes. We used the 3D Monte Carlo POLARIS code to calculate the dust grain temperatures and the local uv flux. We modeled the chemistry using the three-phase astrochemical code NAUTILUS. Photo processes were handled using frequency-dependent cross sections and a new method to account for self and mutual shielding. The multi-grain model outputs are compared to those of single-grain size models (0.1 μm); there are two different assumptions for their equivalent temperature.Results. We find that the Langmuir-Hinshelwood mechanism at equilibrium temperature is not efficient to form H2 at 3–4 scale heights (H), and we adopt a parametric fit to a stochastic method to model H2 formation instead. We find the molecular layer composition (1–3 H) to depend on the amount of remaining H atoms. Differences in molecular surface densities between single and multi-grain models are mostly due to what occurs above 1.5 H. At 100 au, models with colder grains produce H2O and CH4 ices in the midplane, and those with warmer grains produce more CO2 ices; both of these allow for an efficient depletion of C and O as soon as CO sticks on grain surfaces. Complex organic molecules production is enhanced by the presence of warmer grains in the multi-grain models. Using a single-grain model mimicking grain growth and dust settling fails to reproduce the complexity of gas-grain chemistry.Conclusions. Chemical models with a single-grain size are sensitive to the adopted grain temperature and cannot account for all expected effects. A spatial spread of the snowlines is expected to result from the ranges in grain temperature. The amplitude of the effects depends on the dust disk mass.
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.encircumstellar matter
dc.subject.enprotoplanetary disks
dc.subject.enastrochemistry
dc.subject.enstars: pre-main sequence
dc.subject.enradio lines: stars
dc.subject.enradiative transfer
dc.title.enImpact of size-dependent grain temperature on gas-grain chemistry in protoplanetary disks: The case of low-mass star disks
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/202038788
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageA65
bordeaux.volume654
bordeaux.peerReviewedoui
hal.identifierhal-03375584
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03375584v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2021-10&rft.volume=654&rft.spage=A65&rft.epage=A65&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=GAVINO,%20S.&DUTREY,%20A.&WAKELAM,%20V.&GUILLOTEAU,%20S.&KOBUS,%20J.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée