PCA Reduced Gaussian Mixture Models with Applications in Superresolution
NGUYEN, Lan
Laboratoire de l'intégration, du matériau au système [IMS]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Laboratoire de l'intégration, du matériau au système [IMS]
Institut de Mathématiques de Bordeaux [IMB]
NGUYEN, Lan
Laboratoire de l'intégration, du matériau au système [IMS]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Laboratoire de l'intégration, du matériau au système [IMS]
Institut de Mathématiques de Bordeaux [IMB]
Langue
EN
Article de revue
Ce document a été publié dans
Inverse Problems and Imaging. 2022, vol. 16, n° 2, p. 341-366
Résumé en anglais
Despite the rapid development of computational hardware, the treatment of largeand high dimensional data sets is still a challenging problem. This paper providesa twofold contribution to the topic. First, we propose a ...Lire la suite >
Despite the rapid development of computational hardware, the treatment of largeand high dimensional data sets is still a challenging problem. This paper providesa twofold contribution to the topic. First, we propose a Gaussian Mixture Model inconjunction with a reduction of the dimensionality of the data in each componentof the model by principal component analysis, called PCA-GMM. To learn the (lowdimensional) parameters of the mixture model we propose an EM algorithm whoseM-step requires the solution of constrained optimization problems. Fortunately,these constrained problems do not depend on the usually large number of samplesand can be solved efficiently by an (inertial) proximal alternating linearized mini-mization algorithm. Second, we apply our PCA-GMM for the superresolution of 2Dand 3D material images based on the approach of Sandeep and Jacob. Numericalresults confirm the moderate influence of the dimensionality reduction on the overallsuperresolution result.< Réduire
Mots clés en anglais
Gaussian mixture models
expectation maximization algorithm
dimensionality reduction
principal component analysis
maximum likelihood estimation
superresolution
Project ANR
Super-résolution d'images multi-échelles en sciences des matériaux avec des attributs géométriques - ANR-18-CE92-0050