Diketo-Pyrrolo Pyrrole-Based Acceptor-Acceptor Copolymers with Deep HOMO and LUMO Levels Absorbing in the Near Infrared
Langue
EN
Article de revue
Ce document a été publié dans
Applied Sciences. 2022 n° 12, p. 4494
Résumé en anglais
A series of acceptor-acceptor (A-A') alternated copolymers based on dithienodiketopyrrolo pyrrole were synthesized by copolymerizing it with itself and other different electron-poor monomers. The experimental and computed ...Lire la suite >
A series of acceptor-acceptor (A-A') alternated copolymers based on dithienodiketopyrrolo pyrrole were synthesized by copolymerizing it with itself and other different electron-poor monomers. The experimental and computed optoelectronic properties of four DPP-based copolymers, P(DPP-DPP) (with linear and branched chains), copolymer with diazapentalene P(DPP-DAP) and also with dioxothienopyrrolebenzodifurandione P(DPP-BTPBF), as well as thermal characterizations were described. UV-visible spectrophotometry and cyclic voltammetry were used to estimate the optical and electrochemical bandgaps, and were found as very small: 1.3, 1.0, and 0.9 eV for P(DPP-DPP), P(DPP-DAP), and P(DPP-BTPBF), respectively. The BTPBF unit allowed a strong reduction of the bandgap, leading to a broad absorption in the visible and near infra-red regions from 650 to 1450 nm. These results were compared to analogous donor-acceptor (D-A) copolymers previously reported, in which DPP is replaced by DTS, P(DTS-DPP), P(DTS-DAP), and P(DTS-BTPBF). The same trend was observed. By comparing A-A' to D-A' copolymers analogues, it was shown that the bandgap remained the same while both HOMO and LUMO levels were lowered by roughly 0.2 eV.< Réduire
Mots clés en anglais
copolymer
near infra-red
low bandgap
Project ANR
Technologie alternative pour les photodétecteurs infrarouge - ANR-15-CE24-0024
E2S - ANR-16-IDEX-0002
E2S - ANR-16-IDEX-0002