Monitored beams for high-precision neutrino flux determination: The ENUBET project
JOLLET, C.
Institut Pluridisciplinaire Hubert Curien [IPHC]
Centre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
< Réduire
Institut Pluridisciplinaire Hubert Curien [IPHC]
Centre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Nuovo Cim.C, Nuovo Cim.C, 2019-04-08, Naples. 2020, vol. 43, n° 2-3, p. 56
Résumé en anglais
The knowledge of initial flux, energy and flavour of current neutrino beams is currently the main limitation for a precise measurement of neutrino crosssections. The ENUBET ERC project (2016–2021) is studying a facility ...Lire la suite >
The knowledge of initial flux, energy and flavour of current neutrino beams is currently the main limitation for a precise measurement of neutrino crosssections. The ENUBET ERC project (2016–2021) is studying a facility based on a narrow-band neutrino beam capable of constraining the neutrino flux normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. In particular, the identification of large-angle positrons from Ke3 decays at single-particle level can reduce the νe flux uncertainty at the level of 1%. This setup would allow for an unprecedented measurement of the νe cross-section at the GeV scale. Such an experimental input would be highly beneficial to reduce the budget of systematic uncertainties in the next long baseline oscillation projects (i.e., HyperK-DUNE). Furthermore, in narrow-band beams, the transverse position of the neutrino interaction at the detector can be exploited to determine a priori with significant precision the neutrino energy spectrum without relying on the finalstate reconstruction.< Réduire
Mots clés en anglais
neutrino: flux
neutrino: energy spectrum
ENUBET
neutrino: beam
beam monitoring
measurement methods
beam position
positron: particle identification
Origine
Importé de halUnités de recherche