Deep Learning for the Automatic Quantification of Pleural Plaques in Asbestos-Exposed Subjects
Langue
EN
Article de revue
Ce document a été publié dans
International Journal of Environmental Research and Public Health. 2022, vol. 19, n° 3
Résumé en anglais
OBJECTIVE: This study aimed to develop and validate an automated artificial intelligence (AI)-driven quantification of pleural plaques in a population of retired workers previously occupationally exposed to asbestos. ...Lire la suite >
OBJECTIVE: This study aimed to develop and validate an automated artificial intelligence (AI)-driven quantification of pleural plaques in a population of retired workers previously occupationally exposed to asbestos. METHODS: CT scans of former workers previously occupationally exposed to asbestos who participated in the multicenter APEXS (Asbestos PostExposure Survey) study were collected retrospectively between 2010 and 2017 during the second and the third rounds of the survey. A hundred and forty-one participants with pleural plaques identified by expert radiologists at the 2nd and the 3rd CT screenings were included. Maximum Intensity Projection (MIP) with 5 mm thickness was used to reduce the number of CT slices for manual delineation. A Deep Learning AI algorithm using 2D-convolutional neural networks was trained with 8280 images from 138 CT scans of 69 participants for the semantic labeling of Pleural Plaques (PP). In all, 2160 CT images from 36 CT scans of 18 participants were used for AI testing versus ground-truth labels (GT). The clinical validity of the method was evaluated longitudinally in 54 participants with pleural plaques. RESULTS: The concordance correlation coefficient (CCC) between AI-driven and GT was almost perfect (>0.98) for the volume extent of both PP and calcified PP. The 2D pixel similarity overlap of AI versus GT was good (DICE = 0.63) for PP, whether they were calcified or not, and very good (DICE = 0.82) for calcified PP. A longitudinal comparison of the volumetric extent of PP showed a significant increase in PP volumes (p < 0.001) between the 2nd and the 3rd CT screenings with an average delay of 5 years. CONCLUSIONS: AI allows a fully automated volumetric quantification of pleural plaques showing volumetric progression of PP over a five-year period. The reproducible PP volume evaluation may enable further investigations for the comprehension of the unclear relationships between pleural plaques and both respiratory function and occurrence of thoracic malignancy.< Réduire
Mots clés en anglais
Artificial intelligence
Pleural plaques
Asbestos exposure