Afficher la notice abrégée

dc.contributor.authorFURUYA, Kenji
hal.structure.identifierDepartment of Earth and Planetary Sciences [Kobe]
dc.contributor.authorAIKAWA, Yuri
dc.contributor.authorTOMIDA, Kengo
dc.contributor.authorMATSUMOTO, Tomoaki
dc.contributor.authorSAIGO, Kazuya
dc.contributor.authorTOMISAKA, Kohji
hal.structure.identifierFORMATION STELLAIRE 2012
dc.contributor.authorHERSANT, F.
hal.structure.identifierAMOR 2012
dc.contributor.authorWAKELAM, Valentine
dc.date.created2012-07-28
dc.date.issued2012
dc.identifier.issn0004-637X
dc.description.abstractEnWe investigate molecular evolution from a molecular cloud core to a first hydrostatic core in three spatial dimensions. We perform a radiation hydrodynamic simulation in order to trace fluid parcels, in which molecular evolution is investigated, using a gas-phase and grain-surface chemical reaction network. We derive spatial distributions of molecular abundances and column densities in the core harboring the first core. We find that the total of gas and ice abundances of many species in a cold era (10 K) remain unaltered until the temperature reaches ~500 K. The gas abundances in the warm envelope and the outer layer of the first core (T < 500 K) are mainly determined via the sublimation of ice-mantle species. Above 500 K, the abundant molecules, such as H2CO, start to be destroyed, and simple molecules, such as CO, H2O and N2 are reformed. On the other hand, some molecules are effectively formed at high temperature; carbon-chains, such as C2H2 and cyanopolyynes, are formed at the temperature of >700 K. We also find that large organic molecules, such as CH3OH and HCOOCH3, are associated with the first core (r < 10 AU). Although the abundances of these molecules in the first core stage are comparable or less than in the protostellar stage (hot corino), reflecting the lower luminosity of the central object, their column densities in our model are comparable to the observed values toward the prototypical hot corino, IRAS 16293-2422. We propose that these large organic molecules can be good tracers of the first cores.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.title.enChemistry in the First Hydrostatic Core Stage Adopting Three-Dimensional Radiation Hydrodynamic Simulations
dc.typeArticle de revue
dc.identifier.doi10.1088/0004-637X/758/2/86
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.identifier.arxiv1207.6693
bordeaux.journalThe Astrophysical Journal
bordeaux.pageid. 86, 20 pp
bordeaux.volume758
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-00733724
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00733724v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=The%20Astrophysical%20Journal&amp;rft.date=2012&amp;rft.volume=758&amp;rft.issue=2&amp;rft.spage=id.%2086,%2020%20pp&amp;rft.epage=id.%2086,%2020%20pp&amp;rft.eissn=0004-637X&amp;rft.issn=0004-637X&amp;rft.au=FURUYA,%20Kenji&amp;AIKAWA,%20Yuri&amp;TOMIDA,%20Kengo&amp;MATSUMOTO,%20Tomoaki&amp;SAIGO,%20Kazuya&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée