Afficher la notice abrégée

hal.structure.identifierFORMATION STELLAIRE 2013
dc.contributor.authorDUARTE-CABRAL, A.
hal.structure.identifierFORMATION STELLAIRE 2013
dc.contributor.authorBONTEMPS, Sylvain
hal.structure.identifierInstitut de Recherches sur les lois Fondamentales de l'Univers [IRFU]
dc.contributor.authorMOTTE, F.
hal.structure.identifierAstrophysique Interprétation Modélisation [AIM (UMR7158 / UMR_E_9005 / UM_112)]
dc.contributor.authorHENNEMANN, M.
hal.structure.identifierFORMATION STELLAIRE 2013
dc.contributor.authorSCHNEIDER, N.
hal.structure.identifierAstrophysique Interprétation Modélisation [AIM (UMR7158 / UMR_E_9005 / UM_112)]
dc.contributor.authorANDRE, Ph.
dc.date.created2013-08-29
dc.date.issued2013
dc.identifier.issn0004-6361
dc.description.abstractEnAs natural consequences of the accretion process, outflows are one of the few (indirect) tracers of accretion. We used CO(2-1) PdBI observations towards 6 MDCs in Cygnus-X, containing 9 high-mass cores, to investigate what the accretion process and origin of the material feeding the precursors of high-mass stars are. We compared our sample to low-mass objects from the literature and developed simple evolutionary models to reproduce the observables. We find that 8/9 high-mass cores drive clear individual outflows as true equivalents of Class 0 protostars in the high-mass regime. The remaining core has only a tentative outflow detection. It could be amongst the first examples of a true individual high-mass prestellar core. We find that the momentum flux of high-mass objects has a linear relation to the envelope mass, as a scale-up of the relations found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and mass reservoir, suggesting identical collapse timescales for all masses. We conclude that if the pre-collapse evolution is quasi-static, the fragmentation scale (which is similar for all masses) would limit the size of the initial mass reservoirs, leading to shorter free-fall times for higher mass stars. However, as we find identical collapse timescales for all masses, a significant turbulent/magnetic support is needed to slow down the collapse of the more massive envelopes in a quasi-static view. With this support still to be discovered, and with indications of large dynamics in pre-collapse gas for high-mass star formation, we propose that such an identical collapse timescale implies that the initial densities, which should set the duration of the collapse, should be similar for all masses. This suggests that the mass that incorporates massive stars has to have been accreted in a dynamical way from larger scales than those of low-mass stars.
dc.language.isoen
dc.publisherEDP Sciences
dc.title.enCO outflows from high-mass Class 0 protostars in Cygnus-X
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201321393
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.identifier.arxiv1308.6490
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageid.A125
bordeaux.volume558
bordeaux.issue-
bordeaux.peerReviewedoui
hal.identifierhal-00858306
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00858306v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2013&rft.volume=558&rft.issue=-&rft.spage=id.A125&rft.epage=id.A125&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=DUARTE-CABRAL,%20A.&BONTEMPS,%20Sylvain&MOTTE,%20F.&HENNEMANN,%20M.&SCHNEIDER,%20N.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée