Afficher la notice abrégée

hal.structure.identifierECLIPSE 2014
dc.contributor.authorCOSSOU, C.
hal.structure.identifierECLIPSE 2014
dc.contributor.authorRAYMOND, Sean N.
hal.structure.identifierECLIPSE 2014
dc.contributor.authorHERSANT, F.
hal.structure.identifierECLIPSE 2014
dc.contributor.authorPIERENS, A.
dc.date.created2014-07-22
dc.date.issued2014
dc.identifier.issn0004-6361
dc.description.abstractEnPlanetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several $M_\oplus$ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.
dc.language.isoen
dc.publisherEDP Sciences
dc.title.enHot super-Earths and giant planet cores from different migration histories
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201424157
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1407.6011
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageid.A56
bordeaux.volume569
bordeaux.peerReviewedoui
hal.identifierhal-01059919
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01059919v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2014&rft.volume=569&rft.spage=id.A56&rft.epage=id.A56&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=COSSOU,%20C.&RAYMOND,%20Sean%20N.&HERSANT,%20F.&PIERENS,%20A.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée