Afficher la notice abrégée

hal.structure.identifierInstitut de RadioAstronomie Millimétrique [IRAM]
dc.contributor.authorGUZMÁN, V. V.,
hal.structure.identifierInstitut de RadioAstronomie Millimétrique [IRAM]
hal.structure.identifierLaboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
dc.contributor.authorPETY, J.,
hal.structure.identifierInstituto de Ciencia de Materiales de Madrid [ICMM]
dc.contributor.authorGOICOECHEA, J. R.,
hal.structure.identifierLaboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
dc.contributor.authorGERIN, M.,
hal.structure.identifierLaboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
dc.contributor.authorROUEFF, E.,
hal.structure.identifierAMOR 2015
dc.contributor.authorGRATIER, P.
hal.structure.identifierHarvard-Smithsonian Center for Astrophysics [CfA]
dc.contributor.authorOBERG, K. I.,
dc.date.issued2015
dc.identifier.issn2041-8205
dc.description.abstractEnSmall hydrocarbons, such as C2H, C3H and C3H2 are more abundant in photo-dissociation regions (PDRs) than expected based on gas-phase chemical models. To explore the hydrocarbon chemistry further, we observed a key intermediate species, the hydrocarbon ion l-C3H+, in the Horsehead PDR with the Plateau de Bure Interferometer at high-angular resolution (6''). We compare with previous observations of C2H and c-C3H2 at similar angular resolution and new gas-phase chemical model predictions to constrain the dominant formation mechanisms of small hydrocarbons in low-UV flux PDRs. We find that, at the peak of the HCO emission (PDR position), the measured l-C3H+, C2H and c-C3H2 abundances are consistent with current gas-phase model predictions. However, in the first PDR layers, at the 7.7 mum PAH band emission peak, which are more exposed to the radiation field and where the density is lower, the C2H and c-C3H2 abundances are underestimated by an order of magnitude. At this position, the l-C3H+ abundance is also underpredicted by the model but only by a factor of a few. In addition, contrary to the model predictions, l-C3H+ peaks further out in the PDR than the other hydrocarbons, C2H and c-C3H2. This cannot be explained by an excitation effect. Current gas-phase photochemical models thus cannot explain the observed abundances of hydrocarbons, in particular in the first PDR layers. Our observations are consistent with a top-down hydrocarbon chemistry, in which large polyatomic molecules or small carbonaceous grains are photo-destroyed into smaller hydrocarbon molecules/precursors.
dc.language.isoen
dc.publisherBristol : IOP Publishing
dc.subject.enAstrophysics - Astrophysics of Galaxies
dc.title.enSpatially resolved l-c3h+ emission in the horsehead photodissociation region: Further evidence for a top-down hydrocarbon chemistry
dc.typeArticle de revue
dc.identifier.doi10.1088/2041-8205/800/2/L33
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]
dc.identifier.arxiv1502.02325
bordeaux.journalThe Astrophysical journal letters
bordeaux.pageid. L33
bordeaux.volume800
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-01115909
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01115909v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20journal%20letters&rft.date=2015&rft.volume=800&rft.issue=2&rft.spage=id.%20L33&rft.epage=id.%20L33&rft.eissn=2041-8205&rft.issn=2041-8205&rft.au=GUZM%C3%81N,%20V.%20V.,&PETY,%20J.,&GOICOECHEA,%20J.%20R.,&GERIN,%20M.,&ROUEFF,%20E.,&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée