Mostrar el registro sencillo del ítem

hal.structure.identifierECLIPSE 2015
dc.contributor.authorVENOT, O.
dc.contributor.authorFRAY, Nicolas
dc.contributor.authorBÉNILAN, Yves
dc.contributor.authorGAZEAU, Marie-Claire
hal.structure.identifierECLIPSE 2015
dc.contributor.authorHÉBRARD, Eric
hal.structure.identifierGroupe d'Étude des Interactions Hôte-Pathogène [GEIHP]
dc.contributor.authorLARCHER, Gwenaelle
dc.contributor.authorSCHWELL, Martin
hal.structure.identifierASP 2015
dc.contributor.authorDOBRIJEVIC, M.
hal.structure.identifierECLIPSE 2015
dc.contributor.authorSELSIS, Franck
dc.date.issued2015
dc.date.conference2012-11-29
dc.description.abstractEnUltraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.
dc.language.isoen
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.title.enVUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres
dc.typeCommunication dans un congrès
dc.identifier.doi10.1051/bioconf/20140201002
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Instrumentation et méthodes pour l'astrophysique [astro-ph.IM]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1502.07620
bordeaux.page-
bordeaux.volume2
bordeaux.countryFR
bordeaux.conference.cityParis
bordeaux.peerReviewedoui
hal.identifierhal-01136380
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2012-11-30
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01136380v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2015&rft.volume=2&rft.spage=-&rft.epage=-&rft.au=VENOT,%20O.&FRAY,%20Nicolas&B%C3%89NILAN,%20Yves&GAZEAU,%20Marie-Claire&H%C3%89BRARD,%20Eric&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem