Mostrar el registro sencillo del ítem

hal.structure.identifierECLIPSE 2015
dc.contributor.authorIZIDORO, A.
hal.structure.identifierECLIPSE 2015
dc.contributor.authorRAYMOND, Sean N.
dc.contributor.authorMORBIDELLI, Alessandro
dc.contributor.authorWINTER, Othon C.
dc.date.issued2015
dc.identifier.issn0035-8711
dc.description.abstractEnReproducing the large Earth/Mars mass ratio requires a strong mass depletion in solids within the protoplanetary disc between 1 and 3 au. The Grand Tack model invokes a specific migration history of the giant planets to remove most of the mass initially beyond 1 au and to dynamically excite the asteroid belt. However, one could also invoke a steep density gradient created by inward drift and pile-up of small particles induced by gas drag, as has been proposed to explain the formation of close-in super-Earths. Here we show that the asteroid belt's orbital excitation provides a crucial constraint against this scenario for the Solar system. We performed a series of simulations of terrestrial planet formation and asteroid belt evolution starting from discs of planetesimals and planetary embryos with various radial density gradients and including Jupiter and Saturn on nearly circular and coplanar orbits. Discs with shallow density gradients reproduce the dynamical excitation of the asteroid belt by gravitational self-stirring but form Mars analogues significantly more massive than the real planet. In contrast, a disc with a surface density gradient proportional to r-5.5 reproduces the Earth/Mars mass ratio but leaves the asteroid belt in a dynamical state that is far colder than the real belt. We conclude that no disc profile can simultaneously explain the structure of the terrestrial planets and asteroid belt. The asteroid belt must have been depleted and dynamically excited by a different mechanism such as, for instance, in the Grand Tack scenario.
dc.language.isoen
dc.publisherOxford University Press (OUP): Policy P - Oxford Open Option A
dc.subject.enmethods: numerical
dc.subject.enplanets and satellites: formation
dc.title.enTerrestrial planet formation constrained by Mars and the structure of the asteroid belt
dc.typeArticle de revue
dc.identifier.doi10.1093/mnras/stv1835
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1508.01365
bordeaux.journalMonthly Notices of the Royal Astronomical Society
bordeaux.page3619-3634
bordeaux.volume453
bordeaux.issue4
bordeaux.peerReviewedoui
hal.identifierhal-01199176
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01199176v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&rft.date=2015&rft.volume=453&rft.issue=4&rft.spage=3619-3634&rft.epage=3619-3634&rft.eissn=0035-8711&rft.issn=0035-8711&rft.au=IZIDORO,%20A.&RAYMOND,%20Sean%20N.&MORBIDELLI,%20Alessandro&WINTER,%20Othon%20C.&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem