Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut de Physique de Rennes [IPR]
dc.contributor.authorBOURGALAIS, Jérémy
hal.structure.identifierInstitut de Physique de Rennes [IPR]
dc.contributor.authorCAPRON, Michael
dc.contributor.authorKAILASANATHAN, Ranjith Kumar Abhinavam
dc.contributor.authorOSBORN, David L.
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorHICKSON, Kevin M.
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorLOISON, Jean-Christophe
hal.structure.identifierAMOR 2015
dc.contributor.authorWAKELAM, Valentine
hal.structure.identifierInstitut de Physique de Rennes [IPR]
dc.contributor.authorGOULAY, Fabien
hal.structure.identifierInstitut de Physique de Rennes [IPR]
dc.contributor.authorLE PICARD, Sébastien D.
dc.date.issued2015-10-20
dc.identifier.issn0004-637X
dc.description.abstractEnThe product formation channels of ground state carbon atoms, C( 3 P), reacting with ammonia, NH 3 , have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH 3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H 2 CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.title.enThe C(3P) + NH3 Reaction in Interstellar Chemistry. I. Investigation of the Product Formation Channels
dc.typeArticle de revue
dc.identifier.doi10.1088/0004-637X/812/2/106
dc.subject.halPhysique [physics]
dc.identifier.arxiv1603.08257
bordeaux.journalThe Astrophysical Journal
bordeaux.page106
bordeaux.volume812
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-01225629
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01225629v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2015-10-20&rft.volume=812&rft.issue=2&rft.spage=106&rft.epage=106&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=BOURGALAIS,%20J%C3%A9r%C3%A9my&CAPRON,%20Michael&KAILASANATHAN,%20Ranjith%20Kumar%20Abhinavam&OSBORN,%20David%20L.&HICKSON,%20Kevin%20M.&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem