Afficher la notice abrégée

dc.contributor.authorMUTTER, Matthew M.
hal.structure.identifierECLIPSE 2017
dc.contributor.authorPIERENS, A.
hal.structure.identifierThe Samuel Roberts Noble Foundation
dc.contributor.authorNELSON, Richard P.
dc.date.issued2017-03
dc.identifier.issn0035-8711
dc.description.abstractEnWe present the results of two-dimensional hydrodynamic simulations of self-gravitating circumbinary discs around binaries whose parameters match those of the circumbinary planet-hosting systems Kepler-16, Kepler-34 and Kepler-35. Previous work has shown that non-self-gravitating discs in these systems form an eccentric precessing inner cavity due to tidal truncation by the binary, and planets which form at large radii migrate until stalling at this cavity. Whilst this scenario appears to provide a natural explanation for the observed orbital locations of the circumbinary planets, previous simulations have failed to match the observed planet orbital parameters. The aim of this work is to examine the role of self-gravity in modifying circumbinary disc structure as a function of disc mass, prior to considering the evolution of embedded circumbinary planets. In agreement with previous work, we find that for disc masses between one and five times the minimum mass solar nebula (MMSN), disc self-gravity affects modest changes in the structure and evolution of circumbinary discs. Increasing the disc mass to 10 or 20 MMSN leads to two dramatic changes in disc structure. First, the scale of the inner cavity shrinks substantially, bringing its outer edge closer to the binary. Secondly, in addition to the eccentric inner cavity, additional precessing eccentric ring-like features develop in the outer regions of the discs. If planet formation starts early in the disc lifetime, these changes will have a significant impact on the formation and evolution of planets and precursor material.
dc.language.isoen
dc.publisherOxford University Press (OUP): Policy P - Oxford Open Option A
dc.subject.enhydrodynamics
dc.subject.enaccretion
dc.subject.enaccretion discs
dc.subject.enmethods: numerical
dc.subject.enplanets and satellites: formation
dc.subject.enbinaries: general
dc.title.enThe role of disc self-gravity in circumbinary planet systems – I. Disc structure and evolution
dc.typeArticle de revue
dc.identifier.doi10.1093/mnras/stw2768
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1610.07811
bordeaux.journalMonthly Notices of the Royal Astronomical Society
bordeaux.page4735 - 4752
bordeaux.volume465
bordeaux.issue4
bordeaux.peerReviewedoui
hal.identifierhal-01387785
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01387785v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&rft.date=2017-03&rft.volume=465&rft.issue=4&rft.spage=4735%20-%204752&rft.epage=4735%20-%204752&rft.eissn=0035-8711&rft.issn=0035-8711&rft.au=MUTTER,%20Matthew%20M.&PIERENS,%20A.&NELSON,%20Richard%20P.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée