CO$_2$ condensation is a serious limit to the deglaciation of Earth-like planets
hal.structure.identifier | Laboratoire de Météorologie Dynamique (UMR 8539) [LMD] | |
dc.contributor.author | TURBET, Martin | |
hal.structure.identifier | Laboratoire de Météorologie Dynamique (UMR 8539) [LMD] | |
dc.contributor.author | FORGET, Francois | |
hal.structure.identifier | ECLIPSE 2017 | |
dc.contributor.author | LECONTE, J. | |
hal.structure.identifier | Laboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)] | |
dc.contributor.author | CHARNAY, Benjamin | |
hal.structure.identifier | Laboratoire de Planétologie et Géodynamique [UMR 6112] [LPG] | |
dc.contributor.author | TOBIE, G. | |
dc.date.issued | 2017-03 | |
dc.identifier.issn | 0012-821X | |
dc.description.abstractEn | It is widely believed that the carbonate-silicate cycle is the main agent to trigger deglaciations by CO$_2$ greenhouse warming on Earth and on Earth-like planets when they get in frozen state. Here we use a 3D Global Climate Model to simulate the ability of frozen planets to escape from glaciation by accumulating enough gaseous CO$_2$. We find that Earth-like planets orbiting a Sun-like star may never be able to escape from glaciation if their orbital distance is greater than $\sim$ 1.27 AU (Flux $<$ 847 W m$^{-2}$), because CO$_2$ would condense at the poles forming permanent CO$_2$ ice caps. This limits the amount of CO$_2$ in the atmosphere and thus its greenhouse effect. The amount of CO$_2$ that can be trapped in the polar caps depends on the efficiency of CO$_2$ ice to flow laterally as well as its graviational stability relative to subsurface water ice. The flow of CO$_2$ ice from poles to equator is mostly controlled by the bottom temperature, and hence by the internal heat flux. We find that a frozen Earth-like planet located at 1.30 AU of a Sun-like star could store as much as 1.5/4.5/15 bars of dry ice at the poles, for internal heat fluxes of 100/30/10 mW m$^{-2}$. But these amounts are lower limits. For planets with a significant water ice cover, we show that CO$_2$ ice deposits should be gravitationnally unstable. They get burried beneath the water ice cover in short timescales of 10$^2$-10$^3$ yrs, mainly controlled by the viscosity of water ice. For water ice cover exceeding about 300 m, we show that the CO$_2$ would be permanently sequestred underneath the water ice cover, in the form of CO$_2$ liquids, CO$_2$ clathrate hydrates and/or dissolved in subglacial water reservoirs (if any). This would considerably increase the amount of CO$_2$ trapped and further reduce the probability of deglaciation. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Astrophysics - Earth and Planetary Astrophysics | |
dc.title.en | CO$_2$ condensation is a serious limit to the deglaciation of Earth-like planets | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.epsl.2017.07.050 | |
dc.subject.hal | Planète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP] | |
dc.identifier.arxiv | 1703.04624 | |
bordeaux.journal | Earth and Planetary Science Letters | |
bordeaux.page | 11-21 | |
bordeaux.volume | 476 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01491039 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01491039v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth%20and%20Planetary%20Science%20Letters&rft.date=2017-03&rft.volume=476&rft.spage=11-21&rft.epage=11-21&rft.eissn=0012-821X&rft.issn=0012-821X&rft.au=TURBET,%20Martin&FORGET,%20Francois&LECONTE,%20J.&CHARNAY,%20Benjamin&TOBIE,%20G.&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |