Afficher la notice abrégée

dc.contributor.authorCARRERA, Daniel
dc.contributor.authorFORD, Eric B.
hal.structure.identifierUniversidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University [UNESP]
dc.contributor.authorIZIDORO, A.
dc.contributor.authorJONTOF-HUTTER, Daniel
hal.structure.identifierECLIPSE 2018
dc.contributor.authorRAYMOND, Sean N.
dc.contributor.authorWOLFGANG, Angie
dc.date.issued2018
dc.identifier.issn0004-637X
dc.description.abstractEnWe present empirical evidence, supported by a planet formation model, to show that the curve $R/R_\oplus = 1.05\,(F/F_\oplus)^{0.11}$ approximates the location of the so-called photo-evaporation valley. Planets below that curve are likely to have experienced complete photoevaporation. Furthermore, planets just above this curve appear to have inflated radii; thus we identify a new population of inflated super-Earths and mini-Neptunes. Our N-body simulations are set within an evolving protoplanetary disk and include prescriptions for orbital migration, gas accretion and atmospheric loss due to giant impacts. Our simulated systems broadly match the sizes and periods of super-Earths in the Kepler catalog. They also match the relative sizes of adjacent planets in the same system, with the exception of planet pairs that straddle the photo-evaporation valley. This latter group is populated by planet pairs with either very large or very small size ratios ($R_{\rm out} / R_{\rm in} \gg 1$ or $R_{\rm out} / R_{\rm in} \ll 1$) and a dearth of size ratios near unity. It appears that this feature could be reproduced if the planet outside the photoevaporation valley (typically the outer planet, but some times not) is substantially inflated. This new population of inflated planets may be ideal targets for future transit spectroscopy observations with the upcoming James Webb Space Telescope.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.title.enIdentifying inflated super-Earths and photo-evaporated cores
dc.typeArticle de revue
dc.identifier.doi10.3847/1538-4357/aadf8a
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1804.05069
bordeaux.journalThe Astrophysical Journal
bordeaux.pageid. 104
bordeaux.volume866
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-01769738
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01769738v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2018&rft.volume=866&rft.issue=2&rft.spage=id.%20104&rft.epage=id.%20104&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=CARRERA,%20Daniel&FORD,%20Eric%20B.&IZIDORO,%20A.&JONTOF-HUTTER,%20Daniel&RAYMOND,%20Sean%20N.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée