Afficher la notice abrégée

hal.structure.identifierGraduate School of Engineering, Osaka University
dc.contributor.authorSUZUKI, Taiki
hal.structure.identifierAMOR 2018
dc.contributor.authorMAJUMDAR, Liton
hal.structure.identifierGraduate University for Advanced Studies [Hayama] [SOKENDAI]
dc.contributor.authorOHISHI, Masatoshi
hal.structure.identifierJoint ALMA Observatory [JAO]
dc.contributor.authorSAITO, Masao
hal.structure.identifierGraduate School of Frontier Sciences
dc.contributor.authorHIROTA, Tomoya
hal.structure.identifierAMOR 2018
dc.contributor.authorWAKELAM, Valentine
dc.date.issued2018
dc.identifier.issn0004-637X
dc.description.abstractEnThe study of the chemical evolution of glycine in the interstellar medium is one of challenging topics in astrochemistry. Here, we present the chemical modeling of glycine in hot cores using the state-of-the-art three-phase chemical model NAUTILUS, which is focused on the latest glycine chemistry. For the formation process of glycine on the grain surface, we obtained consistent results with previous studies that glycine would be formed via the reactions of COOH with CH$_2$NH$_2$. However, we will report three important findings regarding the chemical evolution and the detectability of interstellar glycine. First, with the experimentally obtained binding energy from the temperature programmed thermal desorption (TPD) experiment, a large proportion of glycine was destroyed through the grain surface reactions with NH or CH$_3$O radicals before it fully evaporates. As a result, the formation process in the gas phase is more important than thermal evaporation from grains. If this is the case, NH$_2$OH and CH$_3$COOH rather than CH$_3$NH$_2$ and CH$_2$NH would be the essential precursors to the gas phase glycine. Secondly, since the gas phase glycine will be quickly destroyed by positive ions or radicals, early evolutionary phase of the hot cores would be the preferable target for the future glycine surveys. Thirdly, we suggest the possibility that the suprathermal hydrogen atoms can strongly accelerate the formation of COOH radicals from CO$_2$, resulting in the dramatic increase of formation rate of glycine on grains. The efficiency of this process should be investigated in detail by theoretical and experimental studies in the future.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enAstrophysics - Astrophysics of Galaxies
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.subject.enAstrophysics - Solar and Stellar Astrophysics
dc.title.enAn Expanded Gas-Grain Model for Interstellar Glycine
dc.typeArticle de revue
dc.identifier.doi10.3847/1538-4357/aad087
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Cosmologie et astrophysique extra-galactique [astro-ph.CO]
dc.identifier.arxiv1807.00111
bordeaux.journalThe Astrophysical Journal
bordeaux.page51
bordeaux.volume863
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-01829880
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01829880v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2018&rft.volume=863&rft.issue=1&rft.spage=51&rft.epage=51&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=SUZUKI,%20Taiki&MAJUMDAR,%20Liton&OHISHI,%20Masatoshi&SAITO,%20Masao&HIROTA,%20Tomoya&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée